PBPK modeling characterization of potential acute impairment effects from inhalation of ethanol during e-cigarette use

Inhal Toxicol. 2020 Jan;32(1):14-23. doi: 10.1080/08958378.2020.1720867. Epub 2020 Feb 4.

Abstract

Objective: Ethanol is used as a solvent for flavoring chemicals in some electronic cigarette (e-cigarette) liquids (e-liquids). However, there are limited data available regarding the effects of inhalation of ethanol on blood alcohol concentration (BAC) during e-cigarette use. In this study, a modified physiologically based pharmacokinetic (PBPK) model for inhalation of ethanol was used to estimate the BAC time-profile of e-cigarette users who puffed an e-liquid containing 23.5% ethanol. Materials and Methods: A modified PBPK model for inhalation of ethanol was developed. Use characteristics were estimated based on first-generation and second-generation e-cigarette topography parameters. Three representative use-case puffing profiles were modeled: a user that took many, short puffs; a typical user with intermediate puff counts and puff durations; and a user that took fewer, long puffs. Results and Discussion: The estimated peak BACs for these three user profiles were 0.22, 0.22, and 0.30 mg/L for first-generation devices, respectively, and 0.85, 0.58, and 0.34 mg/L for second-generation devices, respectively. Additionally, peak BACs for individual first-generation users with directly measured puffing parameters were estimated to range from 0.06 to 0.67 mg/L. None of the scenarios modeled predicted a peak BAC result that approached toxicological or regulatory thresholds that would be associated with physiological impairment (roughly 0.01% or 100 mg/L). Conclusions: The approach used in this study, combining a validated PBPK model for a toxicant with peer-reviewed topographical parameters, can serve as a screening-level exposure assessment useful for evaluation of the safety of e-liquid formulations. Abbreviations: BAC: blood alcohol concentration; e-cigarette: electronic cigarette; e-liquid: e-cigarette liquid or propylene glycol and/or vegetable glycerin-based liquid; HS-GC-FID: headspace gas chromatography with flame-ionization detection; HS-GC-MS: headspace gas chromatography-mass spectrometry; PBPK: physiologically based pharmacokinetic; Cair: puff concentration expressed as ppm; Cair,mass: ethanol air concentration expressed on a mass basis; Cv: ethanol concentration in the venous blood; ρ: density; EC: ethanol concentration in the liquid; PLC: liquid consumption per puff; PAV: air volume of the puff; Cair,mass: puff concentration expressed as ppm; MW: molecular weight; P: pressure; T: temperature; PK: pharmacokinetic.

Keywords: BAC; e-cigarette; ethanol; inhalation exposure; physiologically based pharmacokinetic modeling; topography.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electronic Nicotine Delivery Systems / standards*
  • Ethanol / blood*
  • Humans
  • Inhalation Exposure / adverse effects*
  • Inhalation Exposure / analysis
  • Models, Biological*
  • Vaping* / adverse effects
  • Vaping* / blood

Substances

  • Ethanol