A Novel Sensorised Insole for Sensing Feet Pressure Distributions

Sensors (Basel). 2020 Jan 29;20(3):747. doi: 10.3390/s20030747.

Abstract

Wearable sensors are gaining in popularity because they enable outdoor experimental monitoring. This paper presents a cost-effective sensorised insole based on a mesh of tactile capacitive sensors. Each sensor's spatial resolution is about 4 taxels/cm 2 in order to have an accurate reconstruction of the contact pressure distribution. As a consequence, the insole provides information such as contact forces, moments, and centre of pressure. To retrieve this information, a calibration technique that fuses measurements from a vacuum chamber and shoes equipped with force/torque sensors is proposed. The validation analysis shows that the best performance achieved a root mean square error (RMSE) of about 7 N for the contact forces and 2 N m for the contact moments when using the force/torque shoe data as ground truth. Thus, the insole may be an alternative to force/torque sensors for certain applications, with a considerably more cost-effective and less invasive hardware.

Keywords: capacitive sensors; pressure distribution; sensorised insole; tactile sensors array; wearable sensors.

MeSH terms

  • Biomechanical Phenomena
  • Biosensing Techniques*
  • Foot / physiology*
  • Foot Orthoses
  • Gait / physiology*
  • Humans
  • Pressure
  • Touch / physiology*
  • Wearable Electronic Devices