A Novel Approach to Enhance Mechanical and Thermal Properties of SLA 3D Printed Structure by Incorporation of Metal-Metal Oxide Nanoparticles

Nanomaterials (Basel). 2020 Jan 27;10(2):217. doi: 10.3390/nano10020217.

Abstract

Silver (Ag) ornamented TiO2 semiconducting nanoparticles were synthesized through the sol-gel process to be utilized as nanofillers with photo resin to enhance the mechanical and thermal properties of stereolithography 3D printed objects. The as-prepared Ag-TiO2 nanoparticles (Ag-TNP) were typified and qualified by XRD, XPS, Raman, and FESEM; TEM analysis dissected the morphologies. The enhancement in the tensile and flexural strengths of SLR/Ag-TNP nanocomposites was noted as 60.8% and 71.8%, respectively, at the loading content of 1.0% w/w Ag-TNP within the SLR (stereolithography resin) matrix. Similarly, the thermal conductivity and thermal stability were observed as higher for SLR/Ag-TNP nanocomposites, equated to neat SLR. The nanoindentation investigation shows an excerpt hike in reduced modulus and hardness by the inclusion of Ag-TNP. The resulted thermal analysis discloses that the introduction of Ag-TNP can appreciably augment the glass transition temperature (Tg), and residual char yield of SLR nanocomposites remarkably. Hence, the significant incorporation of as-prepared Ag-TNP can act as effective nanofillers to enhance the thermal and mechanical properties of photo resin.

Keywords: mechanical properties; nanocomposites; rheological properties; semiconducting nanoparticles; stereolithography 3D printing; thermal properties.