Visible-Light Photocatalysis of Asymmetric [2+2] Cycloaddition in Cage-Confined Nanospace Merging Chirality with Triplet-State Photosensitization

Angew Chem Int Ed Engl. 2020 May 25;59(22):8661-8669. doi: 10.1002/anie.201916722. Epub 2020 Mar 20.

Abstract

Although the photodimerization of acenaphthylene (ACE) has been known for 100 years, the asymmetric cycloaddition of its 1-substituted derivatives is unknown. Herein, we report a supramolecular photochirogenic approach in which a homochiral and photoactive Δ/Λ-[Pd6 (RuL3 )8 ]28+ metal-organic cage (Δ/Λ-MOC-16) is used as a supramolecular reactor for the enantioselective exited-state photocatalysis of 1-Br-ACE. Owing to preorganization of the substrates by the supramolecular cage, stereochemical control of the triplet state, and nanospace transfer of energy and chirality, the cycloaddition of ACE proceeded with high selectivity for the formation of anti over syn stereoisomers, whereas the regio-, stereo-, and enantioselective cycloaddition of unsymmetrical 1-Br-ACE showed effective enantiodifferentiation of a pair of anti head-to-head stereoisomers. The enzyme-mimicking photocatalysis was verified by catalytic turnover, rate enhancement, and competing-guest inhibition experiments.

Keywords: asymmetric photocycloaddition; enantioselectivity; homochiral cages; metal-organic cages; photocatalysis.

Publication types

  • Research Support, Non-U.S. Gov't