NK cell-produced IFN-γ regulates cell growth and apoptosis of colorectal cancer by regulating IL-15

Exp Ther Med. 2020 Feb;19(2):1400-1406. doi: 10.3892/etm.2019.8343. Epub 2019 Dec 18.

Abstract

Globally, colorectal cancer (CC) is the third leading cause of mortality associated with cancer. Natural killer (NK) cells are a major class of cells that are responsible for eliminating tumor cells and cytokine production. NK cell-mediated production of interferon gamma (IFN-γ) has antiviral, immunoregulatory and anti-tumor properties. IL-15 is important in linking inflammation with cancer. For instance, IL-15 promotes humoral and cell-mediated immune responses to inhibit tumor growth. IL-15 inhibits colitis-associated colon carcinogenesis by inducing antitumor immunity. However, the effect of NK cell-mediated IFN-γ on IL-15 expression in CC progression remains unknown. mRNA and protein level were detected using reverse transcription-quantitative PCR and western blotting, respectively. IFN-γ concentrations were detected using ELISAs. The cytotoxicity of NK-92 cells on SW480 cells was detected using cytoTox 96® non-radioactive cytotoxicity assays. Cell apoptosis and cell proliferation was detected using flow cytometry and CCK-8 assays, respectively. IL-2 was used for NK-92 stimulation, IL-15 antibodies were used to neutralize IL-15 bioactivity. For the present study, 21 patients with CC and 21 healthy volunteers were enrolled at the First Affiliated Hospital of Xi'an Jiaotong University. IL-15 mRNA and protein expression were significantly lower in NK cells isolated from the CC group compared with healthy volunteer group. IL-2 enhanced the production/secretion of IFN-γ in addition to enhancing NK-92 cell-mediated killing of SW480 cells. Compared with the control group, NK-92 cells treated with IL-2 alone significantly increased cell apoptosis, BAX expression levels as well as phosphorylated (p)-Janus kinase 2 and p-STAT1 protein levels, whilst reducing cell viability and Bcl-2 protein levels in SW480 cells. These observations were not made when treated with IL-2 and polyclonal antibody (pAb) targeting IL-15. Taken together, NK cell-mediated IFN-γ served a pivotal role in CC by regulating IL-15. The effects of IL-2 induced IFN-γ were abolished by pAb IL-15 treatment. The mechanisms of action behind how IFN-γ regulates IL-2 is unclear, and is a promising area for future research.

Keywords: cell apoptosis; cell growth; colorectal cancer; interferon-γ.