Screened range-separated hybrid by balancing the compact and slowly varying density regimes: Satisfaction of local density linear response

J Chem Phys. 2020 Jan 31;152(4):044111. doi: 10.1063/1.5131530.

Abstract

Due to their quantitative accuracy and ability to solve several difficulties, screened range-separated hybrid exchange-correlation functionals are now a standard approach for ab initio simulation of condensed matter systems. However, the screened range-separated hybrid functionals proposed so far are biased either toward compact or slowly varying densities. In this paper, we propose a screened range-separated hybrid functional, named HSEint, which can well describe these density regimes, achieving good accuracy for both molecular and solid-state systems. The semilocal part of the proposed functional is based on the PBEint generalized gradient approximation [E. Fabiano et al., Phys. Rev. B 82, 113104 (2010)], constructed for hybrid interfaces. To improve the functional performance, we employ exact or nearly exact constraints in the construction of range-separated hybrid functional, such as recovering of the local density linear response and semiclassical atom linear response.