Ferrous-Iron-Activated Transcriptional Factor AdhR Regulates Redox Homeostasis in Clostridium beijerinckii

Appl Environ Microbiol. 2020 Mar 18;86(7):e02782-19. doi: 10.1128/AEM.02782-19. Print 2020 Mar 18.

Abstract

The AdhR regulatory protein is an activator of σ54-dependent transcription of adhA1 and adhA2 genes, which are required for alcohol synthesis in Clostridium beijerinckii Here, we identified the signal perceived by AdhR and determined the regulatory mechanism of AdhR activity. By assaying the activity of AdhR in N-terminally truncated forms, a negative control mechanism of AdhR activity was identified in which the central AAA+ domain is subject to repression by the N-terminal GAF and PAS domains. Binding of Fe2+ to the GAF domain was found to relieve intramolecular repression and stimulate the ATPase activity of AdhR, allowing the AdhR to activate transcription. This control mechanism enables AdhR to regulate transcription of adhA1 and adhA2 in response to cellular redox status. The mutants deficient in AdhR or σ54 showed large shifts in intracellular redox state indicated by the NADH/NAD+ ratio under conditions of increased electron availability or oxidative stress. We demonstrated that the Fe2+-activated transcriptional regulator AdhR and σ54 control alcohol synthesis to maintain redox homeostasis in clostridial cells. Expression of N-terminally truncated forms of AdhR resulted in improved solvent production by C. beijerinckiiIMPORTANCE Solventogenic clostridia are anaerobic bacteria that can produce butanol, ethanol, and acetone, which can be used as biofuels or building block chemicals. Here, we show that AdhR, a σ54-dependent transcriptional activator, senses the intracellular redox status and controls alcohol synthesis in Clostridium beijerinckii AdhR provides a new example of a GAF domain coordinating a mononuclear non-heme iron to sense and transduce the redox signal. Our study reveals a previously unrecognized functional role of σ54 in control of cellular redox balance and provides new insights into redox signaling and regulation in clostridia. Our results reveal AdhR as a novel engineering target for improving solvent production by C. beijerinckii and other solventogenic clostridia.

Keywords: GAF domain; clostridia; enhancer binding protein; redox homeostasis; σ54.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Bacterial Proteins / chemistry
  • Bacterial Proteins / genetics*
  • Bacterial Proteins / metabolism
  • Clostridium beijerinckii / genetics*
  • Clostridium beijerinckii / metabolism
  • Ferrous Compounds / metabolism*
  • Oxidation-Reduction
  • Proteostasis*
  • Sequence Alignment
  • Transcription Factors / chemistry
  • Transcription Factors / genetics*
  • Transcription Factors / metabolism

Substances

  • Bacterial Proteins
  • Ferrous Compounds
  • Transcription Factors