Advantage Distillation for Device-Independent Quantum Key Distribution

Phys Rev Lett. 2020 Jan 17;124(2):020502. doi: 10.1103/PhysRevLett.124.020502.

Abstract

Device-independent quantum key distribution (DIQKD) offers the prospect of distributing secret keys with only minimal security assumptions, by making use of a Bell violation. However, existing DIQKD security proofs have low noise tolerances, making a proof-of-principle demonstration currently infeasible. We investigate whether the noise tolerance can be improved by using advantage distillation, which refers to using two-way communication instead of the one-way error correction currently used in DIQKD security proofs. We derive an efficiently verifiable condition to certify that advantage distillation is secure against collective attacks in a variety of DIQKD scenarios, and use this to show that it can indeed allow higher noise tolerances, which could help to pave the way towards an experimental implementation of DIQKD.