Crosstalk between the nervous system and the kidney

Kidney Int. 2020 Mar;97(3):466-476. doi: 10.1016/j.kint.2019.10.032. Epub 2019 Nov 22.

Abstract

Under physiological states, the nervous system and the kidneys communicate with each other to maintain normal body homeostasis. However, pathological states disrupt this interaction as seen in hypertension, and kidney damage can cause impaired renorenal reflex and sodium handling. In acute kidney injury (AKI) and chronic kidney disease (CKD), damaged kidneys can have a detrimental effect on the central nervous system. CKD is an independent risk factor for cerebrovascular disease and cognitive impairment, and many factors, including retention of uremic toxins and phosphate, have been proposed as CKD-specific factors responsible for structural and functional cerebral changes in patients with CKD. However, more studies are needed to determine the precise pathogenesis. Epidemiological studies have shown that AKI is associated with a subsequent risk for developing stroke and dementia. However, recent animal studies have shown that the renal nerve contributes to kidney inflammation and fibrosis, whereas activation of the cholinergic anti-inflammatory pathway, which involves the vagus nerve, the splenic nerve, and immune cells in the spleen, has a significant renoprotective effect. Therefore, elucidating mechanisms of communication between the nervous system and the kidney enables us not only to develop new strategies to ameliorate neurological conditions associated with kidney disease but also to design safe and effective clinical interventions for kidney disease, using the neural and neuroimmune control of kidney injury and disease.

Keywords: acute kidney injury; brain; cytokines; ischemia–reperfusion; macrophages.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Acute Kidney Injury* / pathology
  • Animals
  • Fibrosis
  • Humans
  • Kidney / pathology
  • Nervous System
  • Renal Insufficiency, Chronic* / pathology
  • Reperfusion Injury* / pathology