Vortex fluidics-mediated DNA rescue from formalin-fixed museum specimens

PLoS One. 2020 Jan 30;15(1):e0225807. doi: 10.1371/journal.pone.0225807. eCollection 2020.

Abstract

DNA from formalin-preserved tissue could unlock a vast repository of genetic information stored in museums worldwide. However, formaldehyde crosslinks proteins and DNA, and prevents ready amplification and DNA sequencing. Formaldehyde acylation also fragments the DNA. Treatment with proteinase K proteolyzes crosslinked proteins to rescue the DNA, though the process is quite slow. To reduce processing time and improve rescue efficiency, we applied the mechanical energy of a vortex fluidic device (VFD) to drive the catalytic activity of proteinase K and recover DNA from American lobster tissue (Homarus americanus) fixed in 3.7% formalin for >1-year. A scan of VFD rotational speeds identified the optimal rotational speed for recovery of PCR-amplifiable DNA and while 500+ base pairs were sequenced, shorter read lengths were more consistently obtained. This VFD-based method also effectively recovered DNA from formalin-preserved samples. The results provide a roadmap for exploring DNA from millions of historical and even extinct species.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Base Sequence
  • DNA / genetics
  • DNA / isolation & purification*
  • Formaldehyde*
  • Hydrodynamics*
  • Museums*
  • Nephropidae / genetics
  • Polymerase Chain Reaction
  • Tissue Fixation*

Substances

  • Formaldehyde
  • DNA