Optimizing adipogenic transdifferentiation of bovine mesenchymal stem cells: a prominent role of ascorbic acid in FABP4 induction

Adipocyte. 2020 Dec;9(1):35-50. doi: 10.1080/21623945.2020.1720480.

Abstract

Adipocyte differentiation of bovine adipose-derived stem cells (ASC) was induced by foetal bovine serum (FBS), biotin, pantothenic acid, insulin, rosiglitazone, dexamethasone and 3-isobutyl-1-methylxanthine, followed by incubation in different media to test the influence of ascorbic acid (AsA), bovine serum lipids (BSL), FBS, glucose and acetic acid on transdifferentiation into functional adipocytes. Moreover, different culture plate coatings (collagen-A, gelatin-A or poly-L-lysine) were tested. The differentiated ASC were subjected to Nile red staining, DAPI staining, immunocytochemistry and quantitative reverse transcription PCR (for NT5E, THY1, ENG, PDGFRα, FABP4, PPARγ, LPL, FAS, GLUT4). Nile red quantification showed a significant increase in the development of lipid droplets in treatments with AsA and BSL without FBS. The presence of BSL induced a prominent increase in FABP4 mRNA abundance and in FABP4 immunofluorescence signals in coincubation with AsA. The abundance of NT5E, ENG and THY1 mRNA decreased or tended to decrease in the absence of FBS, and ENG was additionally suppressed by AsA. DAPI fluorescence was higher in cells cultured in poly-L-lysine or gelatin-A coated wells. In additional experiments, the multi-lineage differentiation potential to osteoblasts was verified in medium containing ß-glycerophosphate, dexamethasone and 1,25-dihydroxyvitamin D3 using alizarin red staining. In conclusion, bovine ASC are capable of multi-lineage differentiation. Poly-L-lysine or gelatin-A coating, the absence of FBS, and the presence of BSL and AsA favour optimal transdifferentiation into adipocytes. AsA supports transdifferentiation via a unique role in FABP4 induction, but this is not linearly related to the primarily BSL-driven lipid accumulation.Abbreviations: AcA: acetic acid; AsA: ascorbic acid; ASC: adipose-derived stem cells; BSL: bovine serum lipids; DAPI: 4´,6-diamidino-2-phenylindole; DLK: delta like non-canonical notch ligand; DMEM: Dulbecco's modified Eagle's medium; DPBS: Dulbecco's phosphate-buffered saline; ENG: endoglin; FABP: fatty acid binding protein; FAS: fatty acid synthase; GLUT4: glucose transporter type 4; IBMX: 3-isobutyl-1-methylxanthine; LPL: lipoprotein lipase; MSC: mesenchymal stem cells; α-MEM: α minimum essential medium; NT5E: ecto-5'-nucleotidase; PDGFRα: platelet derived growth factor receptor α; PPARγ: peroxisome proliferator activated receptor γ; RPS19: ribosomal protein S19; SEM: standard error of the mean; THY1: Thy-1 cell surface antigen; TRT: treatment; TRT-Con: treatment negative control; YWHAZ: tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta.

Keywords: Adipocytes; adipose tissue; animal models; fatty acid binding protein; lipid droplets.

MeSH terms

  • Animals
  • Ascorbic Acid / pharmacology*
  • Cattle
  • Cell Differentiation
  • Cell Transdifferentiation
  • Cells, Cultured
  • Culture Media / chemistry
  • Fatty Acid-Binding Proteins / genetics*
  • Fatty Acid-Binding Proteins / metabolism*
  • Gene Expression Regulation / drug effects
  • Mesenchymal Stem Cells / cytology*
  • Mesenchymal Stem Cells / drug effects
  • Mesenchymal Stem Cells / metabolism
  • Osteoblasts / cytology
  • Osteoblasts / metabolism
  • Up-Regulation

Substances

  • Culture Media
  • Fatty Acid-Binding Proteins
  • Ascorbic Acid

Grants and funding

This work was supported by the Alexander von Humboldt Foundation [Georg Forster Research Fellowship];City of Berlin [Elsa-Neumann Grant].