Thiophene-Based Aldehyde Derivatives for Functionalizable and Adhesive Semiconducting Polymers

ACS Appl Mater Interfaces. 2020 Feb 19;12(7):8695-8703. doi: 10.1021/acsami.9b21058. Epub 2020 Feb 7.

Abstract

The pursuit for novelty in the field of (bio)electronics demands for new and better-performing (semi)conductive materials. Since the discovery of poly(3,4-ethylenedioxythiophene) (PEDOT), the ubiquitous golden standard, many studies have focused on its applications but only few on its structural modification and/or functionalization. This lack of structural variety strongly limits the versatility of PEDOT, thus hampering the development of novel PEDOT-based materials. In this paper, we present a short and simple strategy for introducing an aldehyde functionality in thiophene-based semiconducting polymers. First, through a two-step synthesis, an EDOT-aldehyde derivative was prepared and polymerized, both chemically and electrochemically. Next, to overcome the inability of thiophene-aldehyde to be polymerized by any means, we synthesized a trimer in which thiophene-aldehyde is enclosed between two EDOT groups. The successful chemical and electrochemical polymerization of this new trimer is presented. The polymer suspensions were characterized by ultraviolet-visible-near-infrared spectroscopy, while the corresponding films were characterized by Fourier transform infrared and four-point-probe conductivity measurements. Afterward, insoluble semiconducting films were formed by using ethylenediamine as a cross-linker, demonstrating in this way the suitability of the aldehyde group for the easy chemical modification of our material. The efficient reactivity conferred by aldehyde groups was also exploited for grafting fluorescent polyamine nanoparticles on the film surface, creating a fluorescent semiconducting polymer film. The films prepared by electropolymerization, as shown by means of a sonication test, exhibit strong surface adhesion on pristine indium tin oxide (ITO). This property paves the way for the application of these polymers as conductive electrodes for interfacing with living organisms. Thanks to the high reactivity of the aldehyde group, the aldehyde-bearing thiophene-based polymers prepared herein are extremely valuable for numerous applications requiring the facile incorporation of a functional group on thiophene, such as the functionalization with labile molecules (thermo-, photo-, and electro-labile, pH sensitive, etc.).

Keywords: EDOT−aldehyde; PEDOT; adhesion; conductive polymers; electrode materials; thiophene−aldehyde.