Berberine Impairs the Survival of Triple Negative Breast Cancer Cells: Cellular and Molecular Analyses

Molecules. 2020 Jan 24;25(3):506. doi: 10.3390/molecules25030506.

Abstract

Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype. Non-available targeted therapy for TNBC represents its biggest treatment challenge. Thus, finding new promising effective drugs is urgently needed. In the present study, we investigated how berberine, a natural isoquinoline, impairs the survival of TNBC cells in both cellular and molecular levels. Our experimental model was based on the use of eight TNBC cell lines: MDA-MB-468, MDA-MB-231, HCC70, HCC38, HCC1937, HCC1143, BT-20, and BT-549. Berberine was cytotoxic against all treated TNBC cell lines. The most sensitive cell lines were HCC70 (IC50 = 0.19 µM), BT-20 (IC50 = 0.23 µM) and MDA-MB-468 (IC50 = 0.48 µM). Using flow cytometry techniques, berberine, at 0.5 and 1 µM for 120 and 144 h, not only induced cell cycle arrest, at G1 and/or G2/M phases, but it also triggered significant apoptosis. At the molecular level, these results are consistent with the expression of their related proteins using Western blot assays. Interestingly, while berberine was cytotoxic against TNBC cells, it had no effect on the viability of normal human breast cells MCF10A cultured in a 3D matrigel model. These results suggest that berberine may be a good potential candidate for TNBC drug development.

Keywords: apoptosis; berberine; cell cycle; cytotoxicity; triple negative breast cancer.

MeSH terms

  • Berberine / pharmacology*
  • Cell Culture Techniques
  • Cell Cycle Checkpoints / drug effects*
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Female
  • Humans
  • Triple Negative Breast Neoplasms / metabolism*
  • Triple Negative Breast Neoplasms / pathology

Substances

  • Berberine