Formation of Enamines via Catalytic Dehydrogenation by Pincer-Iridium Complexes

J Org Chem. 2020 Mar 6;85(5):3020-3028. doi: 10.1021/acs.joc.9b02846. Epub 2020 Feb 10.

Abstract

Di-isopropylphosphino-substituted pincer-ligated iridium catalysts are found to be significantly more effective for the dehydrogenation of simple tertiary amines to give enamines than the previously reported di-t-butylphosphino-substituted species. It is also found that the di-isopropylphosphino-substituted complexes catalyze dehydrogenation of several β-functionalized tertiary amines to give the corresponding 1,2-difunctionalized olefins. The di-t-butylphosphino-substituted species are ineffective for such substrates; presumably, the marked difference is attributable to the lesser crowding of the di-isopropylphosphino-substituted catalysts. Experimentally determined kinetic isotope effects in conjunction with DFT-based analysis support a dehydrogenation mechanism involving initial pre-equilibrium oxidative addition of the amine α-C-H bond followed by rate-determining elimination of the β-C-H bond.