Addressing Ligand-Based Redox in Molybdenum-Dependent Methionine Sulfoxide Reductase

J Am Chem Soc. 2020 Feb 12;142(6):2721-2725. doi: 10.1021/jacs.9b11762. Epub 2020 Jan 28.

Abstract

A combination of pulsed EPR, CW EPR, and X-ray absorption spectroscopies has been employed to probe the geometric and electronic structure of the E. coli periplasmic molybdenum-dependent methionine sulfoxide reductase (MsrP). 17O and 1H pulsed EPR spectra show that the as-isolated Mo(V) enzyme form does not possess an exchangeable H2O/OH- ligand bound to Mo as found in the sulfite oxidizing enzymes of the same family. The nature of the unusual CW EPR spectrum has been re-evaluated in light of new data on the MsrP-N45R variant and related small-molecule analogues of the active site. These data point to a novel "thiol-blocked" [(PDT)MoVO(SCys)(thiolate)]- structure, which is supported by new EXAFS data. We discuss these new results in the context of ligand-based and metal-based redox chemistry in the enzymatic oxygen atom transfer reaction.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Electron Spin Resonance Spectroscopy
  • Ligands
  • Methionine Sulfoxide Reductases / metabolism*
  • Molybdenum / metabolism*
  • Oxidation-Reduction
  • X-Ray Absorption Spectroscopy

Substances

  • Ligands
  • Molybdenum
  • Methionine Sulfoxide Reductases
  • methionine sulfoxide reductase