Electric Field- and Current-Induced Electroforming Modes in NbO x

ACS Appl Mater Interfaces. 2020 Feb 19;12(7):8422-8428. doi: 10.1021/acsami.9b20252. Epub 2020 Feb 7.

Abstract

Electroforming is used to initiate the memristive response in metal/oxide/metal devices by creating a filamentary conduction path in the oxide film. Here, we use a simple photoresist-based detection technique to map the spatial distribution of conductive filaments formed in Nb/NbOx/Pt devices, and correlate these with current-voltage characteristics and in situ thermoreflectance measurements to identify distinct modes of electroforming in low- and high-conductivity NbOx films. In low-conductivity films, the filaments are randomly distributed within the oxide film, consistent with a field-induced weakest-link mechanism, while in high-conductivity films they are concentrated in the center of the film. In the latter case, the current-voltage characteristics and in situ thermoreflectance imaging show that electroforming is associated with current bifurcation into regions of low and high current density. This is supported by finite element modeling of the current distribution and shown to be consistent with predictions of a simple core-shell model of the current distribution. These results clearly demonstrate two distinct modes of electroforming in the same material system and show that the dominant mode depends on the conductivity of the film, with field-induced electroforming dominant in low-conductivity films and current bifurcation-induced electroforming dominant in high-conductivity films.

Keywords: current bifurcation; electroforming; negative differential resistance; niobium oxide; nonvolatile memory.