An RNA polymerase ribozyme that synthesizes its own ancestor

Proc Natl Acad Sci U S A. 2020 Feb 11;117(6):2906-2913. doi: 10.1073/pnas.1914282117. Epub 2020 Jan 27.

Abstract

The RNA-based organisms from which modern life is thought to have descended would have depended on an RNA polymerase ribozyme to copy functional RNA molecules, including copying the polymerase itself. Such a polymerase must have been capable of copying structured RNAs with high efficiency and high fidelity to maintain genetic information across successive generations. Here the class I RNA polymerase ribozyme was evolved in vitro for the ability to synthesize functional ribozymes, resulting in the markedly improved ability to synthesize complex RNAs using nucleoside 5'-triphosphate (NTP) substrates. The polymerase is descended from the class I ligase, which contains the same catalytic core as the polymerase. The class I ligase can be synthesized by the improved polymerase as three separate RNA strands that assemble to form a functional ligase. The polymerase also can synthesize the complement of each of these three strands. Despite this remarkable level of activity, only a very small fraction of the assembled ligases retain catalytic activity due to the presence of disabling mutations. Thus, the fidelity of RNA polymerization should be considered a major impediment to the construction of a self-sustained, RNA-based evolving system. The propagation of heritable information requires both efficient and accurate synthesis of genetic molecules, a requirement relevant to both laboratory systems and the early history of life on Earth.

Keywords: RNA enzyme; RNA replication; directed evolution.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Base Sequence
  • DNA-Directed RNA Polymerases / chemistry
  • DNA-Directed RNA Polymerases / genetics*
  • DNA-Directed RNA Polymerases / metabolism*
  • Directed Molecular Evolution
  • Nucleic Acid Conformation
  • Nucleotides
  • Polymerization
  • RNA / genetics
  • RNA / metabolism
  • RNA, Catalytic / chemistry
  • RNA, Catalytic / genetics*
  • RNA, Catalytic / metabolism*

Substances

  • Nucleotides
  • RNA, Catalytic
  • RNA
  • DNA-Directed RNA Polymerases