LAR receptor phospho-tyrosine phosphatases regulate NMDA-receptor responses

Elife. 2020 Jan 27:9:e53406. doi: 10.7554/eLife.53406.

Abstract

LAR-type receptor phosphotyrosine-phosphatases (LAR-RPTPs) are presynaptic adhesion molecules that interact trans-synaptically with multitudinous postsynaptic adhesion molecules, including SliTrks, SALMs, and TrkC. Via these interactions, LAR-RPTPs are thought to function as synaptogenic wiring molecules that promote neural circuit formation by mediating the establishment of synapses. To test the synaptogenic functions of LAR-RPTPs, we conditionally deleted the genes encoding all three LAR-RPTPs, singly or in combination, in mice before synapse formation. Strikingly, deletion of LAR-RPTPs had no effect on synaptic connectivity in cultured neurons or in vivo, but impaired NMDA-receptor-mediated responses. Deletion of LAR-RPTPs decreased NMDA-receptor-mediated responses by a trans-synaptic mechanism. In cultured neurons, deletion of all LAR-RPTPs led to a reduction in synaptic NMDA-receptor EPSCs, without changing the subunit composition or the protein levels of NMDA-receptors. In vivo, deletion of all LAR-RPTPs in the hippocampus at birth also did not alter synaptic connectivity as measured via AMPA-receptor-mediated synaptic responses at Schaffer-collateral synapses monitored in juvenile mice, but again decreased NMDA-receptor mediated synaptic transmission. Thus, LAR-RPTPs are not essential for synapse formation, but control synapse properties by regulating postsynaptic NMDA-receptors via a trans-synaptic mechanism that likely involves binding to one or multiple postsynaptic ligands.

Keywords: LAR-RPTPs; NMDA receptors; hippocampal circuit; mouse; neuroscience; presynaptic cell-adhesion molecules; synapse formation; synaptic transmission.

MeSH terms

  • Animals
  • Female
  • Hippocampus / metabolism
  • Hippocampus / pathology
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Neurons / metabolism*
  • Receptor-Like Protein Tyrosine Phosphatases, Class 2 / genetics
  • Receptor-Like Protein Tyrosine Phosphatases, Class 2 / metabolism*
  • Receptors, N-Methyl-D-Aspartate / metabolism*
  • Synapses / metabolism*
  • Transcriptome

Substances

  • Receptors, N-Methyl-D-Aspartate
  • Ptprs protein, mouse
  • Receptor-Like Protein Tyrosine Phosphatases, Class 2