Vertical gradients in foliar physiology of tall Picea sitchensis trees

Tree Physiol. 2020 Mar 11;40(3):321-332. doi: 10.1093/treephys/tpz137.

Abstract

In tall conifers, leaf structure can vary dramatically with height due to decreasing water potential (Ψ) and increasing light availability. This variation in leaf structure can have physiological consequences such as increased respiratory costs, reduced internal carbon dioxide conductance rates and ultimately reduced maximum photosynthetic rates (Amax). In Picea sitchensis (Bong.) Carrière, the leaf structure varies along the vertical gradient in ways that suggest compensatory changes to enhance photosynthesis, and this variation seems to be driven largely by light availability rather than by Ψ. These trends in leaf structure coupled with remarkably fast growth rates and dependence on moist environments inspire two important questions about P. sitchensis: (i) does foliar water uptake minimize the adverse effects of decreasing Ψ with height on leaf structure, and (ii) do trends in leaf structure increase photosynthetic rates despite increasing height? To answer these questions, we measured foliar water uptake capacity, predawn (Ψpd) and midday water potential and gas-exchange rates as they varied between 25- and 89-m heights in 300-year-old P. sitchensis trees in northwestern California. Our major findings for P. sitchensis include the following: (i) foliar water uptake capacity was quite high relative to published values for other woody species; (ii) foliar water uptake capacity increased between the crown base and treetop; (iii) wet season Ψpd was higher than predicted by the gravitational potential gradient, indicating foliar water uptake; and (iv) the maximum photosynthetic rate increased with height, presumably due to shifts in leaf structure between the crown base and treetop, mitigating height-related decreases in Amax. These findings suggest that together, the use of fog, dew and rain deposits on leaves and shifts in the leaf structure to conserve and possibly enhance photosynthetic capacity likely contribute to the rapid growth rates measured in this species.

Keywords: Pinaceae; Sitka spruce; hydrostatic gradient; plant water relations; redwood forest; wet leaves.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Photosynthesis
  • Picea*
  • Plant Leaves
  • Trees*
  • Water

Substances

  • Water