Differences in susceptibility to insecticides among color morphs of the Asian citrus psyllid

Pestic Biochem Physiol. 2020 Feb:163:193-199. doi: 10.1016/j.pestbp.2019.11.015. Epub 2019 Nov 20.

Abstract

Insect color morphs are known to vary in detoxification enzyme activity associated with susceptibility to insecticides. Diaphorina citri occurs in three distinct color morphs, and little data are available addressing this question. In this study, susceptibility to nine insecticides was compared among orange/yellow, gray/brown and blue/green morphs of adult D. citri. Imidacloprid and lambda-cyhalothrin resulted in higher mortality in the orange/yellow morph than in the blue/green morph. The orange/yellow morph was significantly more susceptible to acetamiprid, bifenthrin and chlorfenapyr than the blue/green and gray/brown morphs. For clothianidin and chlorpyriphos, the orange/yellow morph was significantly more susceptible than the gray/brown morphs. Susceptibility to dinotefuran and thiamethoxam was not significantly different between the three color morphs of D. citri. Biochemical enzyme assays revealed that the esterase, glutathione S-transferase and cytochrome P450 activities were significantly higher in the gray/brown and blue/green morphs than in the orange/yellow morph; however, the activities of three detoxification enzymes were not significantly different between gray/brown and blue/green morphs. We analyzed the relative expression among the color morphs of six detoxification genes involved in insecticide resistance. GSTS1 and EST-6 were expressed at significantly higher levels in the blue/green morph than in the orange/yellow and gray/brown morphs. The expression levels of CYP4g15, CYP303A1, CYP4C62 and CYP6BD5 were significantly greater in the gray/brown and blue/green morphs than in the orange/yellow morph. These results suggest that insecticide susceptibility in D. citri is associated with color morphs. Detoxification enzyme activity and the relative expression of six detoxification genes may partially explain these differences. These results may facilitate further work to develop a management strategy for control of D. citri.

Keywords: Cytochrome P450s; Esterases; Gene expression; Glutathione S-transferases; Insecticide susceptibility.

MeSH terms

  • Animals
  • Citrus*
  • Hemiptera*
  • Inactivation, Metabolic
  • Insecticide Resistance
  • Insecticides*

Substances

  • Insecticides