Fracture Surface of 3D Printed Honeycomb Structures at Low Temperature Environments

J Nanosci Nanotechnol. 2020 Jul 1;20(7):4235-4238. doi: 10.1166/jnn.2020.17555.

Abstract

In this paper, surface characteristics of 3D printed structures fractured at low temperature environments are analyzed. The samples are fabricated by using ABS (acrylonitrile butadiene styrene copolymer) material, and the structures are constructed by the well-known honeycomb models using a FDM-Type 3D printer. To analyze the fracture surface of the samples constructed uniquely by using the 3D printer, the bending loads are applied to the samples at 30, -10 and -50 °C, respectively. The characteristics of the fracture surfaces of the 3D samples are also observed by the FE-SEM (field emission scanning electron microscope) equipment. From this experiment, it is evaluated that the fractured surface of the 3D sample is very rough at 30 °C, while it is smooth at a relatively low temperature. Also, several unique features of the fracture surface of a 3D printed sample structured by honeycomb models are also examined.