Effect of High Temperatures on the Impact Strength of Concrete Based on Recycled Aggregate Made of Heat-Resistant Cullet

Materials (Basel). 2020 Jan 18;13(2):465. doi: 10.3390/ma13020465.

Abstract

The article presents results obtained during testing of concrete based on CEM I 42.5R Portland cement, fine and coarse aggregate, glass, volatile ash, and superplastifier. The concrete mixture was modified using filler consisting of bromosilicate heat resistant cullet. Recycled aggregate was added to the batch. Samples for the need of testing were produced as (100 × 100 × 100) mm cubes. Before commencing proper tests, samples have been heated within the temperature range of 20-800 °C. Tests carried out during the proper testing procedure included tests of compressive strength, elevated temperature, impact strength, as well as macroscopic tests of the contact area. The obtained test results have provided proof of there being a possibility of producing special concrete, modified by products obtained from heat resistant cullet. This type of is generally characterized by satisfactory performance parameters. The average compressive strength for concrete modified by a 10% of heat resistant cullet was determined as 43.6 MPa and 48.3 MPa respectively after 28 and 180 days of curing.

Keywords: concrete; concrete impact strength; heat resistant cullet; recycled aggregate.