On the Compressive Response of Polymeric Cellular Materials

Materials (Basel). 2020 Jan 18;13(2):457. doi: 10.3390/ma13020457.

Abstract

This paper presents a series of compression tests performed on a variety of high performance lightweight cellular materials conventionally used in energy absorption applications. Compressive tests were performed over a range of strain rates with a universal testing machine and a single stage gas gun. Experimental results revealed a dependency of the mechanical properties on the polymeric precursor, density, infill topology and strain rates. The dynamic strength of the investigated materials was determined through a material parameter identification study via the finite element (FE) method. Numerical results matched well with the experimental results and revealed a substantial enhancement in the compressive strength of the tested material from quasi-static to dynamic loading regimes by as much as 87%. The strength of 3D printed polymers was superior with respect to the tested polymeric foams. On the other hand, polymeric foams showed higher efficiency and energy absorption ability.

Keywords: 3D printing; dynamic compression tests; foams.