Development of the Measuring Techniques for Estimating the Air Void System Parameters in Concrete Using 2D Analysis Method

Materials (Basel). 2020 Jan 16;13(2):428. doi: 10.3390/ma13020428.

Abstract

The purpose of the present study was to determine the impact of image quality on the results of air void system parameters determination in air-entrained concretes. The focus was on technical aspects related to the preparation of the scanned image of the concrete surface, which was then subjected to 2D surface analysis. Image processing aimed at separating joined voids and removing various types of defects in aggregate and cement mortar. The specific surface of the voids was determined with the air void equivalent diameter or perimeter as the calculation basis. Applying the Schwartz-Saltykov method, the 3D distribution of the air voids was reconstructed based on 2D measurements. On this basis, the micro-air content A300 was determined. The results of the 2D method were compared with the results of determinations carried out using the linear traverse (1D) method according to EN 480-11. The tests confirm the need to correct the image prior to measurements. Comparative tests showed good agreement between the air void system parameters determined using the 2D analysis and the EN 480-11 chord length counting method.

Keywords: Schwartz–Saltykov method; air void distribution; concrete; image analysis; surface area.