Thermotropic liquid crystal (5CB) on two-dimensional materials

Phys Rev E. 2019 Dec;100(6-1):062701. doi: 10.1103/PhysRevE.100.062701.

Abstract

We present ground-state electronic properties of the liquid crystal 4-cyano-4^{'}-pentylbiphenyl (5CB) on the two-dimensional materials monolayer graphene, hexagonal boron nitride, and phosphorene. Our density functional theory results show that the physisorption is robust on all surfaces with the strongest binding of 5CB on phosphorene. All surfaces exhibit flexural distortion, especially monolayer graphene and hexagonal boron nitride. While we find type-I alignment for all three substrates, meaning the Fermi level of the system is in the HOMO-LUMO gap of 5CB, the band structures are qualitatively different. Unlike for graphene and phosphorene, the HOMO-LUMO of 5CB appear as localized states within the band gap of boron nitride. In addition, we find that the valence band for boron nitride is sensitive to the orientation of 5CB relative to the surface. The qualitatively different band structures demonstrate the importance of substrate selection for tailoring the electronic and optoelectronic properties of nematic liquid crystals on two-dimensional materials.