Active pitching of short splitters past a cylinder: Drag increase and wake

Phys Rev E. 2019 Dec;100(6-1):063106. doi: 10.1103/PhysRevE.100.063106.

Abstract

The flow and drag induced by active pitching of plates in the wake of a cylinder of diameter d were experimentally studied for various plate lengths L as well as pitching frequencies f_{p} and amplitudes A_{0} at Reynolds number Re=1.6×10^{4}. Planar particle image velocimetry and a load cell were used to characterize the flow statistics and mean drag of a variety of cylinder-splitter assemblies. Results show the distinctive effect of active pitching on these quantities. In particular, flow recovery was significantly modulated by L, f_{p}, or A_{0}. Specific pitching settings resulted in a wake with dominant meandering patterns and faster flow recovery. We defined a modified version of the amplitude-based Strouhal number of the system St_{A} to account for the effect of the cylinder in active pitching. It characterizes the drag coefficient C_{d} across all the cases studied, and reveals two regions intersecting at a critical value of St_{A}≈0.035. Below this value, the C_{d} remained nearly constant; however, it exhibited a linear increase with increasing St_{A} past this critical point. Inspection of the integral momentum equation showed the dominant role of velocity fluctuations in modulating C_{d} past the critical St_{A}.