Dipole-assisted thermotics: Experimental demonstration of dipole-driven thermal invisibility

Phys Rev E. 2019 Dec;100(6-1):062108. doi: 10.1103/PhysRevE.100.062108.

Abstract

Thermal management has made considerable progress in the past decade for the emerging field of thermal metamaterials. However, two severe problems still handicap the development of thermal metamaterials. That is, thermal conductivities should be singular and uncommon as required by corresponding theories. To solve these problems, here we establish the theory of dipole-assisted thermotics. By tailoring the thermal dipole moment, thermal invisibility can be achieved without the requirements of singular and uncommon thermal conductivities. Furthermore, finite-element simulations and laboratory experiments both validate the theoretical analyses. The performance of the dipole-driven scheme is excellent in both two and three dimensions, and in both steady and transient states. Dipole-assisted thermotics not only offers a distinct mechanism to achieve thermal invisibility, but also has potential applications in thermal management such as infrared signature reduction, thermal protection, and infrared camouflage.