Predicting Radiation Resistance in Breast Cancer with Expression Status of Phosphorylated S6K1

Sci Rep. 2020 Jan 20;10(1):641. doi: 10.1038/s41598-020-57496-8.

Abstract

Emerging evidence suggests that the mammalian target of rapamcyin (mTOR) pathway is associated with radio-resistance in cancer treatment. We hypothesised that phosphorylated ribosomal S6 kinase 1 (p-S6K1), a major downstream regulator of the mTOR pathway, may play a role in predicting radio-resistance. Therefore, we evaluated the association of p-S6K1 expression with radio-resistance in breast cancer cell lines and patients. During median follow-up of 33 (range, 0.1-111) months for 1770 primary breast cancer patients who underwent surgery, patients expressing p-S6K1 showed worse 10-year loco-regional recurrence-free survival (LRFS) compared to that of p-S6K1-negative patients after radiotherapy (93.4% vs. 97.7%, p = 0.015). Multivariate analysis revealed p-S6K1 expression as a predictor of radio-resistance (hazard ratio 7.9, 95% confidence interval 1.1-58.5, p = 0.04). In vitro, CD44high/CD24low MCF7 cells with a radioresistant phenotype expressed higher levels of p-S6K1 than control MCF7 cells. Furthermore, the combination of radiation with treatment of everolimus, an mTOR-S6K1 pathway inhibitor, sensitised CD44high/CD24low MCF7 cells to a greater extent than MCF7 cells. This study provides in vivo and in vitro evidence for p-S6K1 expression status as an important marker for predicting the resistance to radiotherapy and as a possible target for radio-sensitization in breast cancer patients.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Breast Neoplasms / genetics*
  • Breast Neoplasms / radiotherapy*
  • Female
  • Follow-Up Studies
  • Forecasting
  • Gene Expression*
  • Genetic Association Studies*
  • Humans
  • MCF-7 Cells
  • Middle Aged
  • Radiation Tolerance / genetics*
  • Ribosomal Protein S6 Kinases, 70-kDa / genetics*
  • Ribosomal Protein S6 Kinases, 70-kDa / metabolism*
  • Signal Transduction / genetics
  • TOR Serine-Threonine Kinases / metabolism
  • Treatment Outcome

Substances

  • Ribosomal Protein S6 Kinases, 70-kDa
  • TOR Serine-Threonine Kinases
  • ribosomal protein S6 kinase, 70kD, polypeptide 1