Polyradical PROXYL/TEMPO-Derived Amides: Synthesis, Physicochemical Studies, DFT Calculations, and Antimicrobial Activity

Chempluschem. 2017 Nov;82(11):1326-1340. doi: 10.1002/cplu.201700343.

Abstract

A series of polynitroxide amides possessing 2,2,5,5-tetramethyl-1-pyrrolidinyloxy (PROXYL) and/or 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) units connected through various bridges were synthesized and their properties were analyzed. EPR spectroscopy provided detailed insight into their paramagnetic character and related properties. A thorough examination of the EPR spectra of dinitroxides in organic solvents provided valuable information on the intramolecular motions, thermodynamics, and spin-exchange mechanisms. Analysis of low-temperature X- and Q-band EPR spectra of the dissolved dinitroxides provided spin-spin distances that were comparable with the theoretical values obtained by DFT. Cyclic voltammetry investigations revealed (quasi)reversible electrochemical behavior for PROXYL-derived biradicals, whereas significant loss of the reversibility was found for TEMPO-containing bi- and polyradicals. The inhibitory activities of the nitroxides against model bacteria, yeasts, and filamentous fungi were assessed.

Keywords: biological activity; density functional calculations; electrochemistry; nitroxides; radicals.