Selective Detection of Cu2+ Ions by Immobilizing Thiacalix[4]arene on Graphene Field-Effect Transistors

ACS Omega. 2019 Dec 26;5(1):877-881. doi: 10.1021/acsomega.9b03821. eCollection 2020 Jan 14.

Abstract

Highly accurate quantitative detection of heavy metals is essential for environmental pollution monitoring and health safety. Here, for selective detection of Cu2+ ions with high sensitivity, thiacalix[4]arene (TCA) immobilized on graphene field-effect transistors (G-FETs) are developed. Our proposed TCA-immobilized G-FETs are successfully used to detect Cu2+ ions at concentrations ranging from 1 μM to 1 mM via changes in their transfer characteristics. Moreover, the measured transfer characteristics clearly shift only when Cu2+ ions are introduced in the buffer solution despite it containing other metal ions, including those of Na+, Mg2+, Ni2+, and Cd2+; this selective detection of Cu2+ ions is attributed to the planar arrangement of TCA on graphene. Therefore, TCA-immobilized G-FETs selectively detect Cu2+ with high sensitivity.