S-Equol ameliorates insulin secretion failure through Chrebp/Txnip signaling via modulating PKA/PP2A activities

Nutr Metab (Lond). 2020 Jan 14:17:7. doi: 10.1186/s12986-020-0426-8. eCollection 2020.

Abstract

Background: S-Equol, produced from daidzein by gut microbiota, has been suggested as an potential anti-diabetic agent, but the underlying mechanisms remain unclear. Recent evidences demonstrated that carbohydrate response element-binding protein (Chrebp)/Thioredoxin-interacting protein (Txnip) signaling played central roles on diabetes progression, particularly in relation to the function maintenance and apoptosis of pancreatic β-cell. Here, we investigated the effects of S-Equol on β-cell function and Chrebp/Txnip signaling.

Methods: Zucker diabetic fatty rats were treated with racemic Equol (120 mg/kg.BW.d) for 6 weeks. The glucose and lipid metabolism were monitored during the supplementation, and the Chrebp and Txnip expression were measured by using Western blotting. INS-1 cells were incubated with high glucose (26.2 mM) with or without S-Equol (0.1 μM, 1 μM, 10 μM) for 48 h. Glucose-stimulated insulin secretion (GSIS) was evaluated by radioimmunoassay, and the apoptosis of INS-1 cells was analyzed using Annexin V-FITC/PI and TUNEL assay. The dual luciferase reporter assay, chromatin immunoprecipitation assay and Western-blotting followed by Chrebp small interfering RNAs were utilized to clarify the mechanism of transcriptional regulation of S-Equol on Chrebp/Txnip signaling and the activities of protein kinase A (PKA) and protein phophatase (PP2A) were also detected.

Results: In vivo, Equol supplementation delayed the onset of the hyperglycemia and hyperlipemia, ameliorated insulin secretion failure, enhanced GSIS in isolated islets, and significantly reduced Chrebp and Txnip expression in islets. In vitro, S-Equol treatment enhanced GSIS of high glucose cultured INS-1 cell, and reduced apoptosis of INS-1 cells were also observed. Moreover, S-Equol dramatically suppressed Txnip transcription, as evident by the reduction of Txnip protein and mRNA levels and decrease in the Txnip promoter-driven luciferase activity. Meanwhile, S-Equol significantly inhibited Chrebp/Mlx expression and decreased occupancy of Chrebp on the Txnip promoter, and combined with siChrebp, we confirmed that S-Equol improvement of insulin secretion was partially through the Chrebp/Txnip pathway. Furthermore, S-Equol significantly decrease nuclear translocation of Chrebp, which was related with the decrease activity of protein kinase A (PKA) and the increase activity of protein phophatase (PP2A).

Conclusions: S-Equol could ameliorate insulin secretion failure, which was dependent on the suppression of Chrebp/Txnip signaling via modulating PKA/PP2A activities.

Keywords: Chrebp; Diabetes; Insulin secretion; PKA; PP2A; S-Equol; Txnip.