Progresses in the plant 3D chromatin architecture

Yi Chuan. 2020 Jan 20;42(1):73-86. doi: 10.16288/j.yczz.19-326.

Abstract

Chromatin architecture involves the patterns of chromatin coiling and packing as well as the mutual relative allocations of different chromatins. Besides the canonical microscopic observations, the chromatin architectural capture techniques, including the Hi-C and ChIA-PET, have been widely applied in characterization of chromatin architecture in various plant and animal model species, in which chromatin architectural features, such as the chromosome territory, compartment A/B, topological associated domains (TADs) and chromatin loops, were defined. As for the studies in plant species, replying on the two techniques above (with differences in experimental techniques and data structures), scientists have compared the variation of specific chromatin architecture features across species and/or in different cell types of the same plant species, besides detailed analyses in each individual model. Here, we mainly review the recent progresses in studies of plant chromatin architectures, in which their composition, establishing mechanism and effective factors were described and discussed. We also propose the main technical bottlenecks, describe the breaking-through progresses, and anticipate future research directions, which may offer more theoretical references for related researches in the field.

染色质在细胞核内的缠绕、折叠及其在细胞核内的空间排布是真核生物染色质构型的主要特征。在经典DNA探针荧光原位杂交显微观察的基础上,基于新一代测序技术的Hi-C及ChIA-PET染色质构型捕获技术已经被广泛应用于动物及植物细胞核染色质构型的研究中,并以新的角度定义了包括:染色体(质)域(chromosome territory)、A/B染色质区室(compartment A/B)、拓扑偶联结构域(topological associated domains, TADs)、染色质环(chromatin loops)等在内的多个更为精细的染色质构型。利用以上两种主流技术,越来越多的植物物种染色质构型特征被鉴定、分析和比较。本文系统分析和总结了近年来以植物细胞为模型的细胞核染色构型领域取得的重要成果,包括各级染色质构型特征的组成、建立机制和主要影响因素等。在此基础上,分析了目前研究植物染色质构型技术的瓶颈和突破性的技术进展,并对后续研究主要关注的问题和研究内容进行了展望,以期为相关领域的研究提供更多的理论参考和依据。.

Keywords: chromatin architecture; chromatin interaction analysis by paired-end tag sequencing (ChIA-PET); compartment A/B; high-throughput chromosome conformation capture (Hi-C); topological associated domains (TAD).

Publication types

  • Review

MeSH terms

  • Chromatin / chemistry*
  • Chromatin Assembly and Disassembly*
  • Plants*

Substances

  • Chromatin