Synthesis of Oligonucleotides Containing 2'- N-alkylaminocarbonyl-2'-amino-LNA (2'-urea-LNA) Moieties Using Post-Synthetic Modification Strategy

Molecules. 2020 Jan 15;25(2):346. doi: 10.3390/molecules25020346.

Abstract

The post-synthetic modification of an oligonucleotide is a powerful strategy for the synthesis of various analogs of the oligonucleotide, aiming to achieve the desired functions. In this study, we synthesized the thymidine phosphoramidite of 2'-N-pentafluorophenoxycarbonyl-2'-amino-LNA, which was introduced into oligonucleotides. Oligonucleotides containing a 2'-N-pentafluorophenoxycarbonyl-2'-amino-LNA unit could be isolated under ultra-mild deprotection conditions (50 mM K2CO3 in MeOH at room temperature for 4 h). Moreover, by treatment with various amines as a post-synthetic modification, the oligonucleotides were successfully converted into the corresponding 2'-N-alkylaminocarbonyl-2'-amino-LNA (2'-urea-LNA) derivatives. The duplex- and triplex-forming abilities of the synthesized oligonucleotides were evaluated by UV-melting experiments, which showed that 2'-urea-LNAs could stabilize the nucleic acid complexes, similar to the proto-type, 2'-amino-LNA. Thus, 2'-urea-LNAs could be promising units for the modification of oligonucleotides; the design of a substituent on urea may aid the formation of useful oligonucleotides. In addition, pentafluorophenoxycarbonyl, an amino moiety, acted as a precursor of the substituted urea, which may be applicable to the synthesis of oligonucleotide conjugates.

Keywords: 2′-urea-LNA; UV-melting experiment; bridged nucleic acid; modified oligonucleotides; post-synthetic modification.

MeSH terms

  • DNA / chemistry*
  • Nucleic Acid Conformation
  • Oligonucleotides / chemistry*
  • Urea / chemistry*

Substances

  • Oligonucleotides
  • amino-LNA
  • Urea
  • DNA