Subwavelength dielectric resonators for nonlinear nanophotonics

Science. 2020 Jan 17;367(6475):288-292. doi: 10.1126/science.aaz3985.

Abstract

Subwavelength optical resonators made of high-index dielectric materials provide efficient ways to manipulate light at the nanoscale through mode interferences and enhancement of both electric and magnetic fields. Such Mie-resonant dielectric structures have low absorption, and their functionalities are limited predominantly by radiative losses. We implement a new physical mechanism for suppressing radiative losses of individual nanoscale resonators to engineer special modes with high quality factors: optical bound states in the continuum (BICs). We demonstrate that an individual subwavelength dielectric resonator hosting a BIC mode can boost nonlinear effects increasing second-harmonic generation efficiency. Our work suggests a route to use subwavelength high-index dielectric resonators for a strong enhancement of light-matter interactions with applications to nonlinear optics, nanoscale lasers, quantum photonics, and sensors.

Publication types

  • Research Support, Non-U.S. Gov't