Damage Localization of Composites Based on Difference Signal and Lamb Wave Tomography

Materials (Basel). 2020 Jan 4;13(1):218. doi: 10.3390/ma13010218.

Abstract

In order to deal with the problem of composite damage location, an imaging technique based on differential signal and Lamb wave tomography was proposed. Firstly, the feasibility of the technique put forward was verified by simulation. In this process, the composite model was regularly set down by the circular sensor array, with each sensor acting as an actuator in sequence to generate Lamb waves. Apart from that, other sensors were used to collect response signals. With regard to the damage factor, it was mainly determined by the difference between the damage signal and the non-damage signal. The probabilistic imaging algorithm was employed to carry out damage location imaging. Then, experiments were carried out so as to study the selected composite plate. Finally, the tentative outcomes have illustrated that the maximum error of damage imaging position was 7.07 mm. The relative error was 1.6%. In addition, the method has the characteristics of simple calculation and high imaging efficiency. Therefore, it has large technical potential and wide applications in the damage location and damage recognition for composite material.

Keywords: composite materials; damage; identification; lamb wave tomography.