Effects of IL-1β, IL-20, and BMP-2 on Intervertebral Disc Inflammation under Hypoxia

J Clin Med. 2020 Jan 4;9(1):140. doi: 10.3390/jcm9010140.

Abstract

Intervertebral disc (IVD) is an avascular tissue under hypoxic condition after adulthood. Our previous data showed that inflammatory cytokines (interleukin (IL)-1β), IL-20, and bone morphogenetic protein-2 (BMP-2) play important roles in the healing process after disc injury. In the current study, we investigated whether IL-1β, IL-20, or BMP-2 modulate the expression of pro-inflammatory cytokines, chemotaxis factor, and angiogenesis factor on IVD cells under hypoxia. IVD cells were isolated from patients with intervertebral disc herniation (HIVD) at the levels of L4-5 and L5-S1. We found that the expression of IL-1β, IL-20, BMP-2, hypoxia-inducible factor (HIF)-1α, IL-6, IL-8, angiogenetic factor (vascular endothelial growth factor (VEGF)), chemotactic factor (monocyte chemoattractant protein 1 (MCP-1)), and matrix metalloproteinase-3 (MMP-3) was upregulated in IVD cells under hypoxia conditions. In addition, IL-1β upregulated the expression of pro-inflammatory cytokines (IL-6 and IL-8), VEGF, MCP-1, and disc degradation factor (MMP-3) in IVD cells under hypoxia conditions. IL-20 upregulated MCP-1 and VEGF expression. BMP-2 also upregulated the expression of MCP-1, VEGF, and IL-8 in IVD cells under hypoxia conditions. Treatment with antibody against IL-1β decreased VEGF and MMP-3 expression, while treatment with IL-20 or BMP-2 antibodies decreased MCP-1, VEGF, and MMP-3 expression. Moreover, IL-1β modulated both the expression of IL-20 and BMP-2, but IL-20 only modulated BMP-2 either under a hypoxic or normoxic condition. Therefore, we concluded that the inflammation, chemotaxis, matrix degradation, and angiogenesis after disc herniation are influenced by the hypoxic condition and controlled by IL-1β, IL-20, and BMP-2.

Keywords: inflammation; inflammatory cytokines-20 (IL-20); intervertebral disc (IVD).