Chemical Modification and Processing of Chitin for Sustainable Production of Biobased Electrolytes

Polymers (Basel). 2020 Jan 14;12(1):207. doi: 10.3390/polym12010207.

Abstract

In the present work we report on the development of a novel and sustainable electrolyte based on chitin. Chitin biopolymer was carboxymethylated in simple, mild, and green conditions in order to fine-tune the final properties of the electrolyte. To this end, chitin was modified for various reaction times, while the molar ratio of the reagents, e.g., sodium hydroxide and monochloroacetic acid, was maintained fixed. The resulting chitin derivatives were characterized using various techniques. Under optimized conditions, modified chitin derivatives exhibiting a distinct degree of carboxymethylation and acetylation were obtained. Structural features, morphology, and properties are discussed in relation to the chemical structure of the chitin derivatives. For electrolyte applications, the ionic conductivity increased by three magnitudes from 10-9 S·cm-1 for unmodified chitin to 10-6 S·cm-1 for modified chitin with the highest degree of acetylation. Interestingly, the chitin derivatives formed free-standing films with and without the addition of up to 60% of ionic liquid, the ionic conductivity of the obtained solid electrolyte system reaching the value of 10-3 S·cm-1.

Keywords: Carboxymethylation; chitin; deacetylation; ionic liquid; solid polymer electrolyte.