Selective aggregation by ultrasonic standing waves through gas nuclei on the particle surface

Ultrason Sonochem. 2020 May:63:104924. doi: 10.1016/j.ultsonch.2019.104924. Epub 2019 Dec 10.

Abstract

Gas nuclei in water are usually too small to be directly observed. They will grow into bubbles under the negative pressure, which is called cavitation (heterogeneous cavitation). In this study, the gas nuclei in the hydrophilic and hydrophobic silica particle suspension were investigated using the transient cavitation threshold measured by a high-intensity focused ultrasound (HIFU). The transient cavitation bubbles were also observed by a high-speed camera. The results showed that the nuclei only exist on the surface of hydrophobic particles. Furthermore, the aggregation experiments revealed that the aggregates were only formed in the hydrophobic silica suspension by ultrasonic standing waves (USW) at 200 kHz. This distinct difference was mainly due to the formation of gas nuclei on hydrophobic silica particles, which grew and coalesced into stable bubbles under the 200 kHz USW. The aggregation process in suspension was observed by a CCD camera. Moreover, the cavitation thresholds and acoustic radiation forces were analyzed to explain the mechanism of the acoustic aggregation. This study showed a very promising acoustic method for the selective aggregation of hydrophobic particles, which might be efficiently used in the mineral separation industry.

Keywords: Aggregation; Cavitation; Gas nuclei; Ultrasonic stand waves.