Effect of differential muscle activation patterns on muscle deoxygenation and microvascular haemoglobin regulation

Exp Physiol. 2020 Mar;105(3):531-541. doi: 10.1113/EP088322. Epub 2020 Feb 9.

Abstract

New findings: What is the central question of this study? Does the presence and extent of heterogeneity in the ratio of O2 delivery to uptake across human muscles relate specifically to different muscle activation patterns? What is the main finding and its importance? During ramp incremental knee-extension and cycling exercise, the profiles of muscle deoxygenation (deoxy[haemoglobin + myoglobin]) and diffusive O2 potential (total[haemoglobin + myoglobin]) in the vastus lateralis corresponded to different muscle activation strategies. However, this was not the case for the rectus femoris, where muscle activation and deoxygenation profiles were dissociated and might therefore be determined by other structural and/or functional attributes (e.g. arteriolar vascular regulation and control of red blood cell flux).

Abstract: Near-infrared spectroscopy has revealed considerable heterogeneity in the ratio of O2 delivery to uptake as identified by disparate deoxygenation {deoxy[haemoglobin + myoglobin] (deoxy[Hb + Mb])} values in the exercising quadriceps. However, whether this represents a recruitment phenomenon or contrasting vascular and metabolic control, as seen among fibre types, has not been established. We used knee-extension (KE) and cycling (CE) incremental exercise protocols to examine whether differential muscle activation profiles could account for the heterogeneity of deoxy[Hb + Mb] and microvascular haemoconcentration (i.e. total[Hb + Mb]). Using time-resolved near-infrared spectroscopy for the quadriceps femoris (vastus lateralis and rectus femoris) during exhaustive ramp exercise in eight participants, we tested the following hypotheses: (i) the deoxy[Hb + Mb] (i.e. fractional O2 extraction) would relate to muscle activation levels across exercise protocols; and (ii) KE would induce greater total[Hb + Mb] (i.e. diffusive O2 potential) at task failure (i.e. peak O2 uptake) than CE irrespective of muscle site. At a given level of muscle activation, as assessed by the relative integrated EMG normalized to maximal voluntary contraction (%iEMGmax ), the vastus lateralis deoxy[Hb + Mb] profile was not different between exercise protocols. However, at peak O2 uptake and until 20% iEMGmax for CE, rectus femoris exhibited a lower deoxy[Hb + Mb] (83.2 ± 15.5 versus 98.2 ± 19.4 μm) for KE than for CE (P < 0.05). The total[Hb + Mb] at peak O2 uptake was not different between exercise protocols for either muscle site. These data support the hypothesis that the contrasting patterns of convective and diffusive O2 transport correspond to different muscle activation patterns in vastus lateralis but not rectus femoris. Thus, the differential deoxygenation profiles for rectus femoris across exercise protocols might be dependent upon specific facets of muscle architecture and functional haemodynamic events.

Keywords: knee-extension exercise; muscle deoxygenation; near-infrared spectroscopy; quadriceps femoris.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Exercise / physiology
  • Hemoglobins / metabolism*
  • Humans
  • Male
  • Microvessels / metabolism*
  • Microvessels / physiology
  • Muscle, Skeletal / metabolism*
  • Muscle, Skeletal / physiology*
  • Myoglobin / metabolism
  • Oxygen / metabolism*
  • Oxygen Consumption / physiology
  • Quadriceps Muscle / metabolism
  • Quadriceps Muscle / physiology
  • Spectroscopy, Near-Infrared / methods
  • Young Adult

Substances

  • Hemoglobins
  • Myoglobin
  • Oxygen