Facile Synthesis of Flower-Like MnCo2 O4 @PANi-rGO: A High-Performance Anode Material for Lithium-Ion Batteries

Chempluschem. 2019 Oct;84(10):1596-1603. doi: 10.1002/cplu.201900563.

Abstract

Flower-like MnCo2 O4 was prepared in a self-assembly process and used in the formation of MnCo2 O4 @polyaniline (MnCo2 O4 @PANi) that proceeds by a simple in situ polymerization. The MnCo2 O4 @PANi-reduced graphite oxide (MnCo2 O4 @PANi-rGO) composite was then synthesized by introducing rGO into MnCo2 O4 @PANi. This modification improves the overall electronic conductivity of the MnCo2 O4 @PANi-rGO because of the dual conductive functions of rGO and PANi; it also provides a buffer for the changes in electrode volume during cycling, thus improving the lithium-storage performance of MnCo2 O4 @PANi-rGO. The electrochemical performance of the samples was evaluated by charge/discharge cycling testing, cyclic voltammetry, and electrochemical impedance spectroscopy. MnCo2 O4 @PANi-rGO delivers a discharge capacity of 745 mAh g-1 and a Coulombic efficiency of 100 % after 1050 cycles at a current density of 500 mA g-1 , and is a promising anode material for lithium-ion batteries.

Keywords: anode materials; conductive polymers; lithium storage; lithium-ion batteries; transition-metal oxides.