A methodology for the design of an effective air quality monitoring network in port areas

Sci Rep. 2020 Jan 15;10(1):300. doi: 10.1038/s41598-019-57244-7.

Abstract

The assessment of the impact of ship emissions is generally realised by a network of receptors at ground level inside the port area or in the nearby urban canopy. Another possibility is the use of dispersion models capable of providing maps of concentrations to the ground taking into account ship emissions and weather conditions. In this work traffic data of passengers ships in the port of Naples were used to estimate pollutant emissions starting from EMEP/EEA (European Environment Agency/European Monitoring and Evaluation Programme) methodology and real data of power engines. In this way, a hourly file of emission rates was produced and input to CALPUFF together with meteorological data. Then SO2 concentrations at different heights (0-60 m) in correspondence of selected points within the port area were evaluated. Results are compared with data measured at ground level in monitoring campaigns showing how is possible to better identify and quantify the air pollution from ships in port by positioning the receptors inside the port area at different heights from ground-level. The results obtained give useful information for designing an optimum on-site air quality monitoring network able to quantify the emissions of pollutants due to naval traffic and to individuate the contribution of single ships or ships' categories.