Stimulatory Effects of Boscalid on Virulence of Sclerotinia sclerotiorum Indicate Hormesis May Be Masked by Inhibitions

Plant Dis. 2020 Mar;104(3):833-840. doi: 10.1094/PDIS-07-19-1421-RE. Epub 2020 Jan 15.

Abstract

Hormetic effects of fungicides on phytopathogens are of great importance for proper application of fungicides. The aim of the present study was to investigate the stimulatory effects of the fungicide boscalid on mycelial growth and virulence of the devastating plant pathogen Sclerotinia sclerotiorum. Boscalid in potato dextrose agar (PDA) at a dosage range from 0.0005 to 0.002 μg/ml exerted statistically significant (P ≤ 0.015) stimulations on mycelial growth of S. sclerotiorum, and the maximum stimulation magnitudes were 5.55 ± 0.73% (mean ± SD) for the four isolates tested. Boscalid in PDA at 0.02 μg/ml inhibited mycelial growth of isolates HLJ3H and HLJ4H by 15.0 and 8.9%, respectively. However, after the growth-inhibited mycelia were inoculated on rapeseed leaves, isolates HLJ3H and HLJ4H exhibited virulence stimulations of 8.7 and 17.8%, respectively, indicating that hormesis may be masked by inhibitions. Boscalid sprayed at 0.0001 to 0.1 μg/ml on detached rapeseed leaves had significant (P ≤ 0.041) stimulations on virulence of S. sclerotiorum, and the maximum stimulation magnitudes were 17.90 ± 5.94% (mean ± SD) for the four isolates tested. Experiments on 12 isolates with different levels of virulence showed there was a negative correlation (R = -0.663, P = 0.019) between the maximum virulence stimulation magnitude and virulence of S. sclerotiorum in the absence of fungicide. Boscalid at stimulatory concentrations had no significant effect on the expression levels of three virulence-associated genes that encode cutinase (SsCut), polygalacturonase (SsPG1), and oxaloacetate acetylhydrolase (SsOah1). The molecular mechanisms for hormetic effects of boscalid on S. sclerotiorum remain to be studied in the future.

Keywords: chemical; disease management; field crops; fungi; oilseeds and legumes.

MeSH terms

  • Ascomycota*
  • Biphenyl Compounds
  • Fungicides, Industrial*
  • Hormesis
  • Niacinamide / analogs & derivatives
  • Virulence

Substances

  • Biphenyl Compounds
  • Fungicides, Industrial
  • Niacinamide
  • 2-chloro-N-(4-chlorobiphenyl-2-yl)nicotinamide