Qualitative and quantitative dataset of TROL protein interaction with C3 and C4 ferredoxin: NADP+ oxidoreductases

Data Brief. 2019 Dec 20:28:105038. doi: 10.1016/j.dib.2019.105038. eCollection 2020 Feb.

Abstract

Last step of electron transport from ferredoxin to NADP+ in photosynthesis light reactions catalyses ferredoxin: NADP+ oxidoreductase (FNR). FNR is present as soluble protein in stroma, but also bound to the protein complexes on the membrane with thylakoid rhodanase-like protein (TROL) and translocon on the inner envelope chloroplast membrane (Tic62), which have identical C terminal FNR binding domain [1,2]. During the electron transport, FNR anchored by TROL protein transfers electrons on NADP+ and forms NADPH which is then used in Calvin cycle as reducing agent. TROL is an integral membrane protein [3] with an inactive rhodanase-like domain (RHO) facing stroma which, as proposed earlier [4], could bind a small ligand leading to releasing or binding of FNR. FNR-TROL protein complex is necessary for optimal photosynthetic electron flow [1]. It has been shown that C4 plant maize FNR isomers have different N-terminal structure which determines binding affinity to protein complexes and different ratios of bound and unbound FNR in bundle sheath and mesophyll cells, depending on preferable photosynthetic electron transport [5]. Mutant Arabidopsis plant that contain maize FNR1 protein showed influence on dynamic association of FNR and change in excitation balance between photosystems which then influenced photo induced electron transport and finally photosynthesis [5]. In order to determine the influence of maize FNR1 on photosynthesis in C3 plants and difference in interaction strength with TROL, we preformed Yeast two hybrid screening, x-alpha-gal assay and β-galactosidase assay.

Keywords: Electron transport chain; FNR; Photosynthesis; Protein interaction; TROL.