Sleep pressure regulates mushroom body neural-glial interactions in Drosophila

Matters Sel. 2019:2019:10.19185/matters.201903000008. doi: 10.19185/matters.201903000008. Epub 2019 Mar 22.

Abstract

Sleep is a behavior that exists broadly across animal phyla, from flies to humans, and is necessary for normal brain function. Recent studies in both vertebrates and invertebrates have suggested a role for glial cells in sleep regulatory processes. Changes in neural-glial interactions have been shown to be critical for synaptic plasticity and circuit function. Here, we wanted to test the hypothesis that changes in sleep pressure alters neural-glial interactions. In the fruit fly, Drosophila melanogaster, sleep is known to be regulated by mushroom body (MB) circuits. We used the technique GFP Reconstitution Across Synaptic Partners (GRASP) to test whether changes in sleep pressure affect neural-glial interactions between MB neurons and astrocytes, a specialized glial cell type known to regulate sleep in flies and mammals. The MB-astrocyte GRASP signal was reduced after 24 h of sleep deprivation, whereas the signal returned to baseline levels following 72 h of recovery. Social enrichment, which increases sleep drive, similarly reduced the MB-astrocyte GRASP signal. We did not observe any changes in the MB-astrocyte GRASP signal over time-of-day, or following paraquat exposure or starvation. These data suggest that changes in sleep pressure are linked to dynamic changes in neural-glial interactions between astrocytes and neuronal sleep circuits, which are not caused by normal rest-activity cycles or stressors.

Keywords: Astrocyte; Fruit Fly; Glia; Sleep Deprivation; Sleep Homeostasis.