Glutamine protects intestinal mucosa and promotes its transport after burn injury in rats

Int J Clin Exp Pathol. 2018 Mar 1;11(3):1825-1835. eCollection 2018.

Abstract

Glutamine is an important energy source for intestinal epithelial cells (IEC); however, it is still controversial whether glutaminecan be fully utilized under pathological conditions. In this study, we investigated the changes in glutamine transport after burns and assessed the effects of exogenous glutamine administration. Finally, the potential underlying mechanisms were explored. Experimental rats were randomly divided into three groups: control group (C); burn group (B); burn+glutamine group (B+G). Rats in groups B+G and B received intragastric administration of isodose glutamine or alanine, respectively. At days 1, 3 and 5 after burns, the structure of intestinal mucosa and brush-border membrane vesicles (BBMV) were observed. The glutamine transport capacity of IEC and BBMV was detected. The synthesis of glutamine transporter ASCT2 and B0AT1 was determined. Moreover, the intestinal mucosal blood flow (IMBF), diamine oxidase activity, and the glutamine and ATP content were measured. The results showed that burn injury caused structural damage to IECs and BBMV, and significantly impaired the ability for glutamine transportation. Moreover, the mRNA and protein expressions of ASCT2 and B0AT1 as well as the glutamine and ATP content were markedly decreased. Compared with group B, most of these indicators in group B+G showed significant improvement, and approached normal levels. We conclude that glutamine administration can relieve intestinal damage, improve IMBF, promote energy synthesis and alleviate endoplasmic reticulum stress after burn injury. Finally, the synthesis and modification of ASCT2 and B0AT1 are promoted, which ultimately enhances intestinal glutamine transport.

Keywords: BBMV; Glutamine; burn; glutamine transport; intestine.