Flower-like patterns in multi-species bacterial colonies

Elife. 2020 Jan 14:9:e48885. doi: 10.7554/eLife.48885.

Abstract

Diverse interactions among species within bacterial colonies lead to intricate spatiotemporal dynamics, which can affect their growth and survival. Here, we describe the emergence of complex structures in a colony grown from mixtures of motile and non-motile bacterial species on a soft agar surface. Time-lapse imaging shows that non-motile bacteria 'hitchhike' on the motile bacteria as the latter migrate outward. The non-motile bacteria accumulate at the boundary of the colony and trigger an instability that leaves behind striking flower-like patterns. The mechanism of the front instability governing this pattern formation is elucidated by a mathematical model for the frictional motion of the colony interface, with friction depending on the local concentration of the non-motile species. A more elaborate two-dimensional phase-field model that explicitly accounts for the interplay between growth, mechanical stress from the motile species, and friction provided by the non-motile species, fully reproduces the observed flower-like patterns.

Keywords: E. coli; bacteria; front instability; motility; pattern formation; physics of living systems.

Plain language summary

Communities of bacteria and other microbes live in every ecosystem on Earth, including in soil, in hydrothermal vents, on the surface of plants and in the human gut. They often attach to solid surfaces and form dense colonies called biofilms. Most biofilms found in nature are comprised of many different species of bacteria. How the bacteria interact shapes the internal structures of these communities. Many previous studies have focused on the molecules that bacteria use to relate to each other, for example, some bacteria exchange nutrients or release toxins that are harmful to their neighbors. However, it is less clear how direct physical contacts between bacteria affect the whole community. Escherichia coli is a rod-shaped bacterium that is a good swimmer, but has a hard time moving on solid surfaces. Therefore, when a droplet of liquid containing these bacteria is placed in a Petri dish containing a jelly-like substance called agar, the droplet barely expands over a 24-hour period. On the other hand, a droplet containing another rod-shaped bacterium known as Acinetobacter baylyi expands rapidly on agar because these bacteria are able to crawl using microscopic “legs” called pili. Here, Xiong et al. set out to investigate how a colony containing both E. coli and A. baylyi developed on a solid surface. The experiments showed that when a droplet of liquid containing both species was placed on agar, both species grew and spread rapidly, as if the E. coli hitchhiked on the highly motile A. baylyi cells. Furthermore, the growing colony developed a complex flower-like shape. Xiong et al. developed mathematical models that took into account how quickly each species generally grows, their ability to move, the friction between cells and the agar, and other physical properties. The models predicted that the E. coli cells that accumulate at the expanding boundary of the colony make the boundary unstable, leading to the flower-like patterns. Further analysis suggested that similar patterns may form in other situations when motile and non-motile species of bacteria are together. These findings may help us understand the origins of the complex structures observed in many naturally occurring communities of bacteria.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Acinetobacter / cytology
  • Acinetobacter / growth & development*
  • Acinetobacter / physiology
  • Escherichia coli / cytology
  • Escherichia coli / growth & development*
  • Escherichia coli / physiology
  • Friction
  • Microbial Interactions*
  • Models, Biological
  • Movement
  • Stress, Mechanical

Supplementary concepts

  • Acinetobacter baylyi