A scalable pipeline for designing reconfigurable organisms

Proc Natl Acad Sci U S A. 2020 Jan 28;117(4):1853-1859. doi: 10.1073/pnas.1910837117. Epub 2020 Jan 13.

Abstract

Living systems are more robust, diverse, complex, and supportive of human life than any technology yet created. However, our ability to create novel lifeforms is currently limited to varying existing organisms or bioengineering organoids in vitro. Here we show a scalable pipeline for creating functional novel lifeforms: AI methods automatically design diverse candidate lifeforms in silico to perform some desired function, and transferable designs are then created using a cell-based construction toolkit to realize living systems with the predicted behaviors. Although some steps in this pipeline still require manual intervention, complete automation in future would pave the way to designing and deploying unique, bespoke living systems for a wide range of functions.

Keywords: artificial life; bioengineering; evolutionary computation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms*
  • Animals
  • Artificial Cells
  • Automation*
  • Bioengineering / methods*
  • Computer Simulation*
  • Embryo, Nonmammalian / cytology
  • Embryo, Nonmammalian / physiology*
  • Humans
  • Models, Biological*
  • Xenopus laevis / physiology*