Imaging the Human Immunological Synapse

J Vis Exp. 2019 Dec 26:(154). doi: 10.3791/60312.

Abstract

The purpose of the method is to generate an immunological synapse (IS), an example of cell-to-cell conjugation formed by an antigen-presenting cell (APC) and an effector helper T lymphocyte (Th) cell, and to record the images corresponding to the first stages of the IS formation and the subsequent trafficking events (occurring both in the APC and in the Th cell). These events will eventually lead to polarized secretion at the IS. In this protocol, Jurkat cells challenged with Staphylococcus enterotoxin E (SEE)-pulsed Raji cells as a cell synapse model was used, because of the closeness of this experimental system to the biological reality (Th cell-APC synaptic conjugates). The approach presented here involves cell-to-cell conjugation, time-lapse acquisition, wide-field fluorescence microscopy (WFFM) followed by image processing (post-acquisition deconvolution). This improves the signal-to-noise ratio (SNR) of the images, enhances the temporal resolution, allows the synchronized acquisition of several fluorochromes in emerging synaptic conjugates and decreases fluorescence bleaching. In addition, the protocol is well matched with the end point cell fixation protocols (paraformaldehyde, acetone or methanol), which would allow further immunofluorescence staining and analyses. This protocol is also compatible with laser scanning confocal microscopy (LSCM) and other state-of-the-art microscopy techniques. As a main caveat, only those T cell-APC boundaries (called IS interfaces) that were at the right 90° angle to the focus plane along the Z-axis could be properly imaged and analyzed. Other experimental models exist that simplify imaging in the Z dimension and the following image analyses, but these approaches do not emulate the complex, irregular surface of an APC, and may promote non-physiological interactions in the IS. Thus, the experimental approach used here is suitable to reproduce and to confront some biological complexities occurring at the IS.

Publication types

  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Antigen-Presenting Cells / physiology
  • Cell Communication
  • Humans
  • Image Processing, Computer-Assisted
  • Immunological Synapses / physiology*
  • Jurkat Cells
  • Microscopy, Confocal
  • Microscopy, Fluorescence
  • T-Lymphocytes, Helper-Inducer / physiology