OpenSFDI: an open-source guide for constructing a spatial frequency domain imaging system

J Biomed Opt. 2020 Jan;25(1):1-13. doi: 10.1117/1.JBO.25.1.016002.

Abstract

Significance: Spatial frequency domain imaging (SFDI) is a diffuse optical measurement technique that can quantify tissue optical absorption (μa) and reduced scattering (<inline-formula>μs'</inline-formula>) on a pixel-by-pixel basis. Measurements of μa at different wavelengths enable the extraction of molar concentrations of tissue chromophores over a wide field, providing a noncontact and label-free means to assess tissue viability, oxygenation, microarchitecture, and molecular content. We present here openSFDI: an open-source guide for building a low-cost, small-footprint, three-wavelength SFDI system capable of quantifying μa and <inline-formula>μs'</inline-formula> as well as oxyhemoglobin and deoxyhemoglobin concentrations in biological tissue. The companion website provides a complete parts list along with detailed instructions for assembling the openSFDI system.<p> Aim: We describe the design of openSFDI and report on the accuracy and precision of optical property extractions for three different systems fabricated according to the instructions on the openSFDI website.</p> <p> Approach: Accuracy was assessed by measuring nine tissue-simulating optical phantoms with a physiologically relevant range of μa and <inline-formula>μs'</inline-formula> with the openSFDI systems and a commercial SFDI device. Precision was assessed by repeatedly measuring the same phantom over 1 h.</p> <p> Results: The openSFDI systems had an error of 0 ± 6 % in μa and -2 ± 3 % in <inline-formula>μs'</inline-formula>, compared to a commercial SFDI system. Bland-Altman analysis revealed the limits of agreement between the two systems to be ± 0.004 mm - 1 for μa and -0.06 to 0.1 mm - 1 for <inline-formula>μs'</inline-formula>. The openSFDI system had low drift with an average standard deviation of 0.0007 mm - 1 and 0.05 mm - 1 in μa and <inline-formula>μs'</inline-formula>, respectively.</p>,<p> Conclusion: The openSFDI provides a customizable hardware platform for research groups seeking to utilize SFDI for quantitative diffuse optical imaging.</p>

Keywords: diffuse optics; frequency domain; modulated imaging; open source; optical properties; spatial frequency domain imaging.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Equipment Design*
  • Hemoglobins / analysis*
  • Image Processing, Computer-Assisted / instrumentation*
  • Optical Imaging / instrumentation*
  • Oxyhemoglobins / analysis*
  • Phantoms, Imaging*
  • Spectrum Analysis

Substances

  • Hemoglobins
  • Oxyhemoglobins
  • deoxyhemoglobin