Organophotoredox-Mediated Amide Synthesis by Coupling Alcohol and Amine through Aerobic Oxidation of Alcohol

Chemistry. 2020 Mar 23;26(17):3703-3708. doi: 10.1002/chem.201904924. Epub 2020 Feb 27.

Abstract

The combination of an organic photocatalyst [4CzIPN (1,2,3,5-tetrakis(carbazol-9-yl)-4,6 dicyanobenzene) or 5MeOCzBN (2,3,4,5,6-pentakis(3,6-dimethoxy-9 H-carbazol-9-yl)benzonitrile)], quinuclidine, and tetra-n-butylammonium phosphate (hydrogen-bonding catalyst) was employed for amide bond formations. The hydrogen-bonded OH group activated the adjacent C-H bond of alcohols towards hydrogen atom transfer (HAT) by a radical species. The quinuclidinium radical cation, generated through single-electron oxidation of quinuclidine by the photocatalyst, employed to abstract a hydrogen atom from the α-C-H bond of alcohols selectively due to a polarity effect-produced α-hydroxyalkyl radical, which subsequently converted to the corresponding aldehyde under aerobic conditions. Then the coupling of the aldehyde and an amine formed a hemiaminal intermediate that upon photocatalytic oxidation produced the amide.

Keywords: amides; hemiaminals; oxidation; photocatalysts; polarity.